
Computational Modeling of Social Behavior

Coding Challenges – Day 2

You will build an epidemiological model in NetLogo in which agents move around in space and
infect one another. With the simulation you will be able to vary (1) how the infection starts, (2) how
agents move through space and encounter one another, (3) how effectively the infection spreads, (4)
how quickly infected agents recover, and (5) whether recovery conveys immunity. You will be able to
plot the proportion of agents who are susceptible, infected, and immune. In the end, your Interface
tab should look something like this:

Designing our model
Before you start coding, look through the following model description. This will help you break up
the coding of the model into small, discrete tasks.

Agent and their world
The world is a toroidal square grid with dimensions 101 x 101 patches.
Agents are turtles that move through this space. They move constantly, and their movement is not
influenced by other agents. Their color indicates their infection state: white = susceptible, red =
infected, gray = removed. As their move through space, susceptible agents can become infected if
they get too close to infected agents. Infected agents can recover. Depending on the disease,
recovered agents may become susceptible again, or they may be “removed,” meaning that they
cannot become re-infected.

Initialization
First, all variables and agentsets are cleared.
Next, a user-defined number of turtles are created and placed in random locations on the grid. Their
statuses as “infected” and “removed” should be set to false, and their color set to white.
Next, the disease is seeded among some number of randomly selected turtles. These turtles should
have their color set to red and their status as “infected” set to true.
Finally, we reset the tick counter.

At each tick

• If every turtle is infected (global spread) or if no turtles are infected (the disease is eradicated),
stop the simulation.

• For each susceptible agent:
o If not removed, if there are any infected agents close by, become infected with a

probability equal to the transmission rate.
o [NOTE: avoid having agents able to infect other agents on the same tick on which

they become newly infected]
• For each infected agent

o With a probability equal to the recovery rate, recover.
o If remove-recovered? is true, set recovered to “removed,” otherwise set to

“susceptible.” Update turtles-own boolean variables and agents’ colors accordingly.
• For each agent

o Move:
§ First, turn left and right a random number of degrees as determined by the

turning-angle slider.
§ Then move forward a distance equal to speed.

Plotting
Create a plot with 3 lines as a function of time: the proportion of agents who are (1) susceptible, (2)
infected, and (3) removed.

1. ANALYZING BATCH RUNS
We want to systematically study this model. This involves running many simulations and sweeping
across parameter values. NetLogo has a feature to do this called BehaviorSpace. Setup a
BehaviorSpace experiment to explore how diffusion rates respond to population density and
mobility. For all simulations, set recovery-rate to zero (so this is a pure SI diffusion model). Fix init-
infected at 5. Run 10 simulations for each parameter combination, dealing with the following values:

• num-turtles = {100, 500, 1000}
• speed = {0.5, 1}
• turning-angle = {0, 45, 180}
• transmissibility = {0.3, 0.6}

Note how the number of simulations gets very large very quickly, every for this sort of initial
exploration! 10 x 3 x 2 x 3 x 2 = 360 simulations. Make sure you only collect data at the end of each
run, and that each run stops automatically when all agents are infected. Note that NetLogo will
automatically record the number of ticks, which is the variable interest. You will want “Table output.”

Analyze the resulting data using analytical tools of your choice. What do you find? In other words,
how do the four factors influence the speed of diffusion? Do they interact?

2. DETERMINING CONTACT RATE
In the derivation of the mathematical SIS model, we were able to calculate the basic reproduction
number, R0, as the contact rate times the ratio of the transmissibility and recovery rates. While the
latter two numbers may be considered intrinsic properties of the disease, the contact rate results from
demographics and behavior. In the agent-based model we have built, three parameters influence
contact rate: num-turtles (the population density), speed, and turning-angle (the rate at which agents
move through the population and contact other agents. Experiment with the simulation to see if you
change the equilibrium infection rate without altering the transmissibility or recovery rates. What do
you find? Think about how would might test this systematically using batch runs.

3. COMPLEX CONTAGION
In 2007, sociologists Damon Centola and Michael Macy introduced a model of “complex contagion.”
This model is based on the premise that the adoption of some beliefs, behaviors, or products may
require influence from multiple sources. As such, the dynamics of diffusion may be different from
class SI models in which exposure to a single “infected” individual is sufficient for spread.
(a) Create a new diffusion model on a 121 x 121 grid, using patches only. Call it
ComplexContagion.nlogo. Initialize the model with a 3 x 3 square of patches infected. Assume each
patch is connected to their nearest eight neighbors, so we can use the reporter neighbors. Establish a
slider for a parameter threshold that varies from 1 to 20. At each time step, each uninfected patch that
has at least threshold infected neighbors becomes infected. When threshold > 1, the contagion is
considered “complex.” Is there a maximum threshold for the spread of infection? If so, why?
(b) Plot the proportion of patches that are infected over time. How long does it take for the infection
to completely diffuse through the population as a function of threshold?
(c) CHALLENGE: Create a switch for a Boolean variable called asynchronous? If this is true, patches
can become infected in random order. If false, all patches first determine if they will become infected
on a given tick, then all of those who will change status (from uninfected to infected) do so at the
same time. How does this change the spatial dynamics?
 (d) CHALLENGE: Centola and Macy showed that the maximum threshold for the spread of
infection depends in part on the network connectivity—that is, how many other agents each is
connected to. Let’s make a more strongly connected network. Create a switch for a Boolean variable
called bigger-neighborhood. If this is true, do the following:
 (i) Initialize the simulation with a 5 x 5 square of patches infected.

(ii) Assume each patch is connected to their nearest 24 neighbors. To do this, create a new
reporter called big-neighbors, which can be called by a patch (this can be done just like setting
up a procedure, except the first line will be “to-report big-neighbors” and you must use the
command “report” followed by an agentset of the appropriate 24 patches. One way to do this
is to use the NetLogo primitive patch-set.

How does changing the network size change the maximum threshold for whether or not diffusion
will occur?

