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Day 4

Networks, etc.

Computational Modeling of Social Behavior



Outline of the day

• Morning  
‣ Models and Empirical Data 
‣ Network Theory 

• Afternoon
‣ Modeling Agents on Networks 
‣ Coda: Why Model



What can we do with models?

• Scaffold theory development by creating mental 
models 

• Explain generative mechanism behind existing 
data 

• Predict future data



Schank & Alberts (2000) Proc R Soc B; Schank (2008) J. Theor. Biol. 



• Data collection: 
‣ Rat pups moved around in arena individually and in 

groups at 7 and 10 days old. Video capture.  

• Model:  
‣ Agents move through simulated arena,  
‣ Evolved contingent movement behaviors in response to 

nothing, wall, and other pups

Schank (2008) J. Theor. Biol. 



Schank (2008) J. Theor. Biol. 



• Results: 
‣ Evolved models fit data than any null model  
‣ At 7 days, individual-evolved model fit group data with 

other pups treated as wall 
‣ At 10 days, individual-evolved model was terrible fit, 

required social contingent movement.  
‣ Supports conclusion that social awareness is not 

present at 7 days old, but is by 10 days old.  

Schank (2008) J. Theor. Biol. 



Turchin et al. (2013) PNAS 

• Epstein: If you didn’t 
generate it, you didn’t 
explain it 

• But, if you did generate it, 
you have only generated a 
candidate explanation





Data Model

Hills & Todd (2008) JASSS



Smaldino & Schank (2013) Complexity

Mate choice model

Male and female agents vary in “attractiveness” on 
1-10 scale and have opportunities to form pairs. 

Two decision rules:  
1. Prefer the most attractive 
2. Prefer the most similar 

Three movement rules 
1. Non-spatial/well-mixed (NS) 
2. Zigzag (ZZ): move rapidly through space 
3. Brownian (BR): move slowly through space



Assumptions about interaction networks can make two very 
different decision rules each fit the data

Smaldino & Schank (2013) Complexity





Model assumptions are important

• Conformity: an above-
baseline probability of 
adopting the common 
behavioral variant

Boyd & Richerson (1985) Culture and the 
Evolutionary Process

unbiased 
transmission

conformist 
transmission



Model assumptions are important

• Two variants: A and B 

• Initial: 50% each 

• In each run, one variant was 
preferred by all (direct bias) 

• Each time step:  
‣ Each individual paired with 

randomly chosen demonstrator 
‣ If demonstrator had preferred 

variant, copy 
‣ Else, copy with probability pLess 

= 0.2
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Smaldino, Aplin, & Farine (2017) bioRxiv:159038







Networks



What is a network?

1

2

3
4

5 6

Link (edge, tie)

Node (vertex)

A =

0

BBBBBB@

0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

1

CCCCCCA

Adjacency matrix:



Weighted networks

A =

0

@
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1

A

1 2

3
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3

A =

0

@
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1 2

3



Degree and density
• Which are the most important or central nodes in a network? 

k = 2

ki =
nX

j=1

Aijdegree:

The density of a network is the 
proportion of possible edges 
that actually exist. 

(also called ‘degree centrality’)



Eigenvector Centrality
• Give more weight to edges that connect to highly-

connected nodes 

• Requires computing the eigenvectors of the 
adjacency matrix (requires linear algebra) 

• Google’s PageRank algorithm is a variant of this



Paths
• A path between two nodes is any 

sequence of non-repeating connected 
nodes that connects the two nodes 

• The shortest path between two nodes 
is one that connects the two nodes 
with the smallest number of edges 
(also called the distance between the 
nodes) 

• The average path length is the 
average distance between all pairs of 
nodes in a network

3

1

4

5

2



Euler and the  
Seven Bridges of Königsberg

Is there any walking route that crosses all seven bridges 
exactly once?



Betweenness Centrality
• Extent to which a node lies on 

paths between other nodes 

• Let nist be 1 if node i lies on the 
shortest path from node s to 
node t, and 0 if it doesn’t (or if 
there is no such path). The 
betweenness centrality of node i 
is:

xi =
X

st

n

i
st

A

Group 1 Group 2

low-degree node with high betweenness



Closeness Centrality
• Based on mean distance from a node to other nodes. 

• Take reciprocal so higher values indicate higher closeness 

`i =
1

n

X

j

dijMean distance from node i 
to all other nodes

Closeness centrality: Ci =
1

`i
=

nP
j dij



Interpretation of centrality measures

Centrality measure Interpretation in social networks

Degree How many people can this person reach directly?

Eigenvector How well is this person connected to other well-
connected people?

Betweenness How likely is this person likely to be the most 
direct route between two people in the network?

Closeness How fast can this person reach everyone in the 
network?



Transitivity and Clustering
• How predictive is the 

fact that A is friends with 
B and C of whether B 
and C are also friends?

x z

y

The path xyz is closed if the 
third edge from z to x is present. 

C =

(number of triangles)⇥ 3

(number of connected triples)

Clustering coefficient:



Local Clustering

• Similar to betweenness centrality 

• Can be used to probe for structural 
holes

• Watts-Strogatz “Average clustering” 
coefficient:

Local clustering for node i: 
Ci =

(number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i)

CWS =
1

n

nX

i=1

Ci



Community Detection
• Separating the network into groups of nodes that are highly 

connected within groups and sparsely connected between 
groups. 

• Several algorithms exist, each with their own pros and cons. 



Interaction Models on Networks

• Epidemics 

• Diffusion of innovations or information 

• Evolutionary games 

• Economic transactions 

• Food webs



Models of Network 
Architectures

• Regular lattices 

• Random networks 

• Small-world networks 

• Scale-free networks



Lattices
• Characterized by 

regular structure 

• Easy to model 
computationally 

• Sometimes possible to 
solve analytically 

• Questionable realism

Ring lattice Square lattice

Triangular lattice Hexagonal lattice



Random Networks
• Introduced by Erdös & Renyi (1959) 

• Minimal assumption for a connected 
population 

• Multiple network formation algorithms 
exist. Example: N nodes are specified, 
and each possible edge is added with 
a fixed probability 

• Average degree is predictable, but 
degree varies between nodes 

• Probably not realistic for many systems

degree distribution for 
1000-node ER network



Small-world networks
• Introduced by Watts and Strogatz (1998) 

• Characterized by high clustering (like 
lattices) and short path lengths (like 
random networks) 

• Many real world networks share this 
property:  
‣ Film actors (IMDB) 
‣ Power grid nodes and high-voltage 

transmission lines in Western US 
‣ Neural network of C. elegans 

• Fat-tailed degree distribution: 
overabundance of hubs

p = probability of rewiring edge



Scale-free networks

• Scale-free: Parts of the network 
exhibit similar features as the 
whole network 

• Many real-world networks exhibit 
power-law degree distributions

• Few high-degree nodes (hubs), 
many low-degree nodes

Newman (2003) SIAM



Why do power laws exhibit as 
straight lines on log-log plots?

y = ax

�k

log y = log(ax

�k
)

= log a+ log(x

�k
)

= log a� k log x

Pennock et al. (2002) PNAS



Preferential Attachment Algorithm

• Barabási & Albert (1999) 

• Nodes are added sequentially  

• Connectivity is not uniformly 
random, but preferential 

• Model
‣ Start with m0 nodes 
‣ Each time step, add a new 

node with m edges, that link to 
m existing nodes with a 
probability proportionate to the 
current degree of those nodes 
(relative to all other nodes) 

‣ “The rich get richer”





Preferential Attachment Algorithm

• Barabási & Albert (1999) 

• Nodes are added sequentially  

• Connectivity is not uniformly 
random, but preferential 

• Model
‣ Start with m0 nodes 
‣ Each time step, add a new 

node with m edges, that link to 
m existing nodes with a 
probability proportionate to the 
current degree of those nodes 
(relative to all other nodes) 

‣ “The rich get richer”







Why model?



• Models formalize and scaffold theory development 

• Good theory structures the interpretation of data 

• Good theory leads to better hypothesis formation 







Counterpoint:

(Begley & Ellis 2012, Nature)

Oncology 
47/53 ‘landmark’ studies 
did not replicate

Neuroscience  
Errors in popular 
statistical methods imply 
false positive rate of up to 
70%
(Eklund et al. 2016, PNAS)

(Open Science Collaboration 2015, 
Science)

Psychology  
61/100 studies in top 
journals failed to replicate 
(p < .05)

Most fields?

(Baker 2016, Nature)



Science as Signal Detection for Facts



How do we find facts?

1. Hypothesis Selection

Novel 
hypotheses

Tested 
hypotheses

A previously tested 
hypothesis is selected 
for replication with 
probability r, otherwise 
a novel (untested) 
hypothesis is selected. 
Novel hypotheses are 
true with probability b. 

1 – r r
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McElreath R & Smaldino PE (2015) Replication, communication, and the 
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.
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Recursions:

Solutions:

McElreath R & Smaldino PE (2015) Replication, communication, and the 
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.



Proportion true hypotheses at different numbers of net positive findings
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McElreath R & Smaldino PE (2015) Replication, communication, and the 
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.
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McElreath R & Smaldino PE (2015) Replication, communication, and the 
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.



“Nothing in biology makes sense 
except in light of evolution” 

–Theodosius Dobzhansky (1973)



“All social science research must do some 
violence to reality in order to reveal simple truths.” 

–Lazer & Friedman (2007)



Turning your idea into a model

• Not a trivial problem 

• Look for existing solutions 

• Get creative 

• Keep it simple (KISS) 

• Solicit feedback 

• Remember Hofstadter’s Law


