Computational Modeling of Social Behavior

$$
\text { Day } 4
$$

Networks, etc.

Paul Smaldino

Outline of the day

- Morning
- Models and Empirical Data
- Network Theory
- Afternoon
- Modeling Agents on Networks
- Coda: Why Model

What can we do with models?

- Scaffold theory development by creating mental models
- Explain generative mechanism behind existing data
- Predict future data

Schank \& Alberts (2000) Proc R Soc B; Schank (2008) J. Theor. Biol.

- Data collection:
- Rat pups moved around in arena individually and in groups at 7 and 10 days old. Video capture.
- Model:
- Agents move through simulated arena,
- Evolved contingent movement behaviors in response to nothing, wall, and other pups
$R_{1}: \quad o_{12}= \begin{cases}\rho & \text { if any of the front three cells contain a pup } \\ \omega & \text { if any of the front three cells contain a wall } \\ & \text { and none contain a pup } \\ \phi & \text { if all three front cells are empty }\end{cases}$

				2				

Schank (2008) J. Theor. Biol.

- Results:
- Evolved models fit data than any null model
- At 7 days, individual-evolved model fit group data with other pups treated as wall
- At 10 days, individual-evolved model was terrible fit, required social contingent movement.
- Supports conclusion that social awareness is not present at 7 days old, but is by 10 days old.

- Epstein: If you didn't generate it, you didn't explain it
- But, if you did generate it, you have only generated a candidate explanation

Turchin et al. (2013) PNAS

Mate choice model

Male and female agents vary in "attractiveness" on 1-10 scale and have opportunities to form pairs.

Two decision rules:

1. Prefer the most attractive
2. Prefer the most similar

Three movement rules

1. Non-spatial/well-mixed (NS)
2. Zigzag (ZZ): move rapidly through space
3. Brownian (BR): move slowly through space

Assumptions about interaction networks can make two very different decision rules each fit the data

Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

Model assumptions are important

- Conformity: an abovebaseline probability of adopting the common behavioral variant

NUMBER OF MODELS CHARACTERIZED BY

VARIANT C Evolutionary Process

Model assumptions are important

- Two variants: A and B
- Initial: 50\% each
- In each run, one variant was preferred by all (direct bias)
- Each time step:
- Each individual paired with randomly chosen demonstrator
- If demonstrator had preferred variant, copy
- Else, copy with probability pLess $=0.2$

SCIENTIFIC REPZRTS

OPEN Conformity cannot be identified based on population-level signatures
Secteredion Mey 2026
Publuted 31October 2516

Alberto Acerbil*, Edwin L. C. van Leevwen ${ }^{2,2} \mathbf{N}^{*}$, Daniel B. M. Haun ${ }^{2}$ 8 Claudio Tennie
Conformist transmission, defined as a disproportionate likeihood to copy the majority, is considered a potent mechanism underlying the emergence and stabilization of cultural diversity. However, mbiguity within and across disciplines remains as to how to ident fy conformist tramsmission empincall. in most stidies, a populationievel ovtcome has been taien as the benchmaikto evibence and the proportional majority size. Using an individual-based mobel, we thow that, under ecologicily plevvỉle conditions, this sigmoidal relation can also be detected without equipping individuals with a conformist bias. Situations in which individuals copy randomly from a fixed subset of demonstrators in the population, or in which they have a preference for one of the possible variants, yield similar sigmoidal patterns as a conformist bies would. Our findings warrant a reviaiting of studies that base heic conformist transmission conclusions solely on the sigmoidal Curve. More generally, our resilts explained by other individual.level strategies, and that more empirical support is needed to prove the existence of an individual:level conformist bias in human and other animals.

 in senarios where indmid dals actually adopt the behaviour of the mapocity', but this outcome is expected siment

 individan-level arrateges (heneforth "IISr"ieg, "coey the majority"). Caltaral evolution models adopt a presise definition of coefformist
 aconformist bias, an individual should have a probability to copy the majerity that is higher than the propor ist individual shoold have a probablity to copy A higher than 60 K . Importartl), only this stricter version of

Initial frequency ${ }_{A}$ always 50\%

Networks

What is a network?

Bipartite networks

Multiplex networks

Degree and density

- Which are the most important or central nodes in a network?

$k=2$
degree: $\quad k_{i}=\sum_{j=1}^{n} A_{i j}$
(also called 'degree centrality')

The density of a network is the proportion of possible edges that actually exist.

Eigenvector Centrality

- Give more weight to edges that connect to highlyconnected nodes
- Requires computing the eigenvectors of the adjacency matrix (requires linear algebra)
- Google's PageRank algorithm is a variant of this

Paths

- A path between two nodes is any sequence of non-repeating connected nodes that connects the two nodes
- The shortest path between two nodes is one that connects the two nodes with the smallest number of edges (also called the distance between the nodes)

- The average path length is the average distance between all pairs of nodes in a network

Euler and the
 Seven Bridges of Königsberg

Is there any walking route that crosses all seven bridges exactly once?

Betweenness Centrality

- Extent to which a node lies on paths between other nodes
- Let n^{i} st be 1 if node i lies on the shortest path from node s to node t, and 0 if it doesn't (or if there is no such path). The betweenness centrality of node i is:

$$
x_{i}=\sum_{s t} n_{s t}^{i}
$$

low-degree node with high betweenness

Closeness Centrality

- Based on mean distance from a node to other nodes.
- Take reciprocal so higher values indicate higher closeness
$\begin{aligned} & \text { Mean distance from node } i \\ & \text { to all other nodes }\end{aligned} \quad \ell_{i}=\frac{1}{n} \sum_{j} d_{i j}$
Closeness centrality: $\quad C_{i}=\frac{1}{\ell_{i}}=\frac{n}{\sum_{j} d_{i j}}$

Interpretation of centrality measures

Centrality measure

Interpretation in social networks

Eigenvector
How well is this person connected to other wellconnected people?

Betweenness
How likely is this person likely to be the most direct route between two people in the network?

Closeness
How fast can this person reach everyone in the network?

Transitivity and Clustering

- How predictive is the fact that A is friends with B and C of whether B and C are also friends?

Clustering coefficient:

$$
C=\frac{(\text { number of triangles }) \times 3}{(\text { number of connected triples })}
$$

The path $x y z$ is closed if the third edge from z to x is present.

Local Clustering

Local clustering for node i :
$C_{i}=\frac{\text { (number of pairs of neighbors of } i \text { that are connected) }}{\text { (number of pairs of neighbors of } i \text {) }}$

- Similar to betweenness centrality
- Can be used to probe for structural holes

- Watts-Strogatz "Average clustering" coefficient:

$$
C_{W S}=\frac{1}{n} \sum_{i=1}^{n} C_{i}
$$

Community Detection

- Separating the network into groups of nodes that are highly connected within groups and sparsely connected between groups.
- Several algorithms exist, each with their own pros and cons.

Interaction Models on Networks

- Epidemics
- Diffusion of innovations or information
- Evolutionary games
- Economic transactions
- Food webs

Models of Network Architectures

- Regular lattices
- Random networks
- Small-world networks
- Scale-free networks

Lattices

- Characterized by regular structure
- Easy to model computationally
- Sometimes possible to solve analytically
- Questionable realism

Ring lattice

Triangular lattice

Hexagonal lattice

Random Networks

- Introduced by Erdös \& Renyi (1959)
- Minimal assumption for a connected population
- Multiple network formation algorithms exist. Example: N nodes are specified, and each possible edge is added with a fixed probability
- Average degree is predictable, but degree varies between nodes
- Probably not realistic for many systems

Small-world networks

- Introduced by Watts and Strogatz (1998)
$p=$ probability of rewiring edge
- Characterized by high clustering (like lattices) and short path lengths (like random networks)
- Many real world networks share this property:
- Film actors (IMDB)

- Power grid nodes and high-voltage transmission lines in Western US
- Neural network of C. elegans
- Fat-tailed degree distribution: overabundance of hubs

Scale-free networks

- Scale-free: Parts of the network exhibit similar features as the whole network
- Many real-world networks exhibit power-law degree distributions
- Few high-degree nodes (hubs), many low-degree nodes

Why do power laws exhibit as

 straight lines on log-log plots?$$
y=a x^{-k}
$$

$\log y=\log \left(a x^{-k}\right)$
$=\log a+\log \left(x^{-k}\right)$
$=\log a-k \log x$

Preferential Attachment Algorithm

- Barabási \& Albert (1999)
- Nodes are added sequentially
- Connectivity is not uniformly random, but preferential
- Model
- Start with m_{0} nodes
- Each time step, add a new node with m edges, that link to m existing nodes with a probability proportionate to the current degree of those nodes (relative to all other nodes)
- "The rich get richer"

Preferential Attachment Algorithm

- Barabási \& Albert (1999)
- Nodes are added sequentially
- Connectivity is not uniformly random, but preferential
- Model
- Start with m_{0} nodes
- Each time step, add a new node with m edges, that link to m existing nodes with a probability proportionate to the current degree of those nodes (relative to all other nodes)
- "The rich get richer"

```
to setup
    clear-all
    set-default-shape turtles "circle"
    ;; make the initial network of two turtles and an edge
    make-node nobody ;; first node, unattached
    make-node turtle 0 ;; second node, attached to first node
    reset-ticks
end
;;;;;;;;;;;;;;;;;;;;;
;;; Main Procedures ;;;
;;;;;;;;;;;;;;;;;;;;;
to go
    ;; new edge is green, old edges are gray
    ask links [ set color gray ]
    make-node find-partner ;; find partner & use it as attachment
                                ;; point for new node
    tick
    if layout? [ layout ]
end
;; used for creating a new node
to make-node [old-node]
    create-turtles 1
    [
        set color red
        if old-node != nobody
            [ create-link-with old-node [ set color green ]
                ;; position the new node near its partner
                move-to old-node
                fd 8
            ]
    ]
end
;; This code is the heart of the "preferential attachment" mechanism, and acts like
to-report find-partner
    report [one-of both-ends] of one-of links
end
```


Why model?

- Models formalize and scaffold theory development
- Good theory structures the interpretation of data
- Good theory leads to better hypothesis formation

Surrogates for Theories

Gerd Gigerenzer

Max Planck Institute for Human Development

Several years ago, I spent a day and a night in a library reading through issues of the Journal of Experimental Psychology from the 1920s and 1930s. This was professionally a most depressing experience. Not because these articles were methodologically mediocre. On the contrary, many of them make today's research pale in comparison to their diversity of methods and statistics, their detailed reporting of single-case data rather than mere averages, and their careful selection of trained subjects. And many topics-such as the influence of the gender of the experimenter on the performance of the participants-were of interest then as now. What depressed me was that almost all of this work is forgotten; it does not seem to have left a trace in the collective memory of our profession. It struck me that most of it involved collecting data without substantive theory. Data without theory are like a baby without a parent: their life expectancy is low.

Counterpoint:

Oncology

47/53 'landmark' studies did not replicate
(Begley \& Ellis 2012, Nature)

Psychology

61/100 studies in top journals failed to replicate ($p<.05$)
(Open Science Collaboration 2015, Science)

Neuroscience

Errors in popular
statistical methods imply false positive rate of up to 70\%
(Eklund et al. 2016, PNAS)

Most fields?

(Baker 2016, Nature)

Science as Signal Detection for Facts

How do we find facts?

Real truth of hypothesis
Probability of result
T
F

positive results
negative results

1. Hypothesis Selection

A previously tested hypothesis is selected for replication with probability r, otherwise a novel (untested) hypothesis is selected. Novel hypotheses are true with probability b.

KEY	Exterior $=$ experimental evidence
Interior $=$ true epistemic state	Unknown
True (T)	Positive (+)
False (T)	Negative $(-)$
General case	General case (+ or -)

2. Investigation

3. Communication

Experimental results are communicated to

 the scientific community with a probability that depends upon both the experimental result (+, -) and whether the hypothesis was novel (N) or a replication (R). Communicated results join the set of tested hypotheses. Uncommunicated replications revert to their prior status.- New result communicated
..... New result not communicated

File drawer
McElreath R \& Smaldino PE (2015) Replication, communication, and the population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.

2. Investigation

prior status.

Recursions:

$$
n_{\mathrm{T}, s}^{\prime}=n_{\mathrm{T}, s}+\operatorname{anr}\left(-f_{\mathrm{T}, s}\left(c_{\mathrm{R}+}(1-\beta)+c_{\mathrm{R}-} \beta\right)+f_{\mathrm{T}, s-1}(1-\beta) c_{\mathrm{R}+}+f_{\mathrm{T}, s+1} \beta c_{\mathrm{R}-}\right)
$$

Solutions:

$$
\hat{p}_{\mathrm{T}, s}=b(1-r) \sum_{m=1}^{\infty} r^{m-1} K(m,(m+s) / 2)(1-\beta)^{\frac{1}{2}(m+s)} \beta^{\frac{1}{2}(m-s)}
$$

McElreath R \& Smaldino PE (2015) Replication, communication, and the population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.

Proportion true hypotheses at different numbers of net positive findings

McElreath R \& Smaldino PE (2015) Replication, communication, and the population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.

Proportion true hypotheses at different numbers of net positive findings

Base rate and false-positive rate most important factors population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.
"Nothing in biology makes sense except in light of evolution"
-Theodosius Dobzhansky (1973)

"All social science research must do some violence to reality in order to reveal simple truths."
-Lazer \& Friedman (2007)

Turning your idea into a model

- Not a trivial problem
- Look for existing solutions
- Get creative
- Keep it simple (KISS)
- Solicit feedback
- Remember Hofstadter's Law

