Computational Modeling of Social Behavior

Day 4

Networks, etc.

Paul Smaldino



Outline of the day

* Morning
» Models and Empirical Data

» Network Theory

- Afternoon

» Modeling Agents on Networks
» Coda: Why Model



What can we do with models?

e Scaffold theory development by creating mental
models

* Explain generative mechanism behind existing
data

e Predict future data
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e Data collection:

» Rat pups moved around in arena individually and In
groups at 7 and 10 days old. Video capture.

* Model:

» Agents move through simulated arena,

» Evolved contingent movement behaviors in response to
nothing, wall, and other pups

p if any of the front three cells contain a pup

@ if any of the front three cells contain a wall -« —_ t
and none contain a pup

¢ if all three front cells are empty

R1: 012 = {

Schank (2008) J. Theor. Biol.
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* Results:
» Evolved models fit data than any null model

» At 7 days, individual-evolved model fit group data with
other pups treated as wall

» At 10 days, individual-evolved model was terrible fit,
required social contingent movement.

» Supports conclusion that social awareness is not
present at 7 days old, but is by 10 days old.

Schank (2008) J. Theor. Biol.



 Epstein: If you didn't
generate it, you didn't
explain it

* But, it you did generate i,
you have only generated a
candigate explanation

Turchin et al. (2013) PNAS
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Mate choice model

Male and female agents vary in “attractiveness” on
1-10 scale and have opportunities to form pairs.

Two decision rules:
1. Prefer the most attractive
2. Prefer the most similar

Three movement rules

1. Non-spatial/well-mixed (NS)

2. Zigzag (ZZ). move rapidly through space
3. Brownian (BR): move slowly through space

Smaldino & Schank (2013) Complexity



Assumptions about interaction networks can make two very
different decision rules each fit the data
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Pattern-Oriented Modeling of Agent-Based
Complex Systems: Lessons from Ecology

Volker Grimm,"* Eloy Revilla,” Uta Berger,” Florian Jeltsch,* Wolf M. Mooij,” Steven F. Railsback,®
Hans-Hermann Thulke,’ Jacob Weiner,” Thorsten Wiegand,' Donald L. DeAngelis®

Medawar zone

Payoff

Model complexity

Problem'\ Patterns




Model assumptions are important

unbiased
transmission

e Conformity: an above-
baseline probability of -
adopting the common
behavioral variant

ACQUIRING VARIANT C

conformist
transmission

PROBABILITY OF

0 n

NUMBER OF MODELS
| CHARACTERIZED BY
Boyd & Richerson (1985) Culture and the VARIANT C

Evolutionary Process



Model assumptions are important

« Two variants: A and B SCIENTIFIC REPg}RTS

OPEN

* |nitial;: 50% each

Receved 04 Moy 2076

* In each run, one variant was st s
preferred by all (direct bias)

* Each time step:

» Each individual paired with
randomly chosen demonstrator

» |f demonstrator had preferred
variant, copy

» Else, copy with probability pLess
=0.2

Conformity cannot be identified
based on population-level
signatures

Alberto Acerdi™’, Edwin J. C. van Leeuwen™"’, Daniel B. M. Haun* & Claudio Tennie'

Conformist transmission, defined as a disproportionate likefihood to copy the majority, is considered
a potent mechanism undertying the emergence and stabdization of cultural dwversity. However,
ambiguity withun and across disciplines remains as to how to identfy conformist transmession
empirically. In most studies, a population level outcome has been taken as the benchmark to evidence
conformest transmission: a sigmoidal relation between individuals’ probability to copy the majerity
and the proportional majority size. Using an individual-based moadel, we sthow that, under ecologically
plavsidle conditions, this sigmoidal relation can also be detected without equipping individuals with »
conformint bias. Situations in which individuals copy randomily from 8 fxed subset of demonstrators
in the population, or in which they have a preference for one of the possible variants, yield simillar
sigmoidal patterns as a conformist bias would. Our findings warrant a revisiting of studies that base
their conformist transmission conclusions solely on the sigmoidal curve. More generally, our resuits
indicate that pogulation level outcomes interpreted as conformist transmission could potentially be
explained by other individual-level strategies, and that more empirical support is needed to prove the
exsstence of an individual-level conformist bias in human and other animals.

Condormis: transmssion |s considered a potent mechanism underlying the emergence and stablizacion of human
cultural &versity. It has been shown, by means of formal modelling, that conformist transmission can facilitate
and safeguard cukural variation from crostom toward similarity, although it may not be the only mechanism
that can do so . Such stable cultural varfation, in ture, has been peroposed &5 & peeroguisite for caltural selection
betweon groups, claimed to be the necomary factor to cxplain the extraondinary range of cooperation and proso-
clality in the dumas species” . Az the samse time, claims of “conformiy™ have recently been seported in 2 diversity
of non-human andesal spocies, such s “condoemity” in raty®; chimpansces *; vervet mosken”; “conformint trans-
mission” in stickiebacks™; and great tits'* (see refs 12 and 13 for review)

Doxpine its importance, conformint transssiuion has boen defined in mumerous, often incompatidle, ways, For
instance, “conformity” has been equated with social influence trumping personal knowledge (see ref. 14), irre
spective of msajority considerations (see refs 15 and 16). Nocably, the presence of “conformity” has been claimed
in scenarios where indridaals actually adopt the behaviour of the mapority”. but this outcome s expected almost
any time there is calvaral transmsission”, and can simply be instastiaced by individaals copyiag nandomly (ref 1,
also see ref 17), Overall, an cxtensive source of confusion regarding conformity defnitions i that some of them
refer o population-level ouncomes (henceforth "PLOs"; e.g., "Dehavioural homsogeneity™), while others refer to
individaal-level strategion (hencoforth "ILSs"; e g, "copy the majority”)

Culzaral evolutson models adopt a precse definition of conformist transmission. whsch entails individuals
having a dispreportionate tendency 1o copy the majority (henceforth “conforssint bim™). This meass thae, to dhow
a conformist bias, an individeal should have a probability to copy the majoricy that is higher than the propor-
thoa of the majority itseld In other words, If 60% of individaals in 2 group show 2 behaviour A, & conform.
ist individual should have a probabiity to copy A higher than 60%. Importastix. only this stricter version of
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Networks




What is a network”?

Link (edge, tie) Adjacency matrix:
0 1 0 0 1 O

1 01 1 0 O

0 1 0 1 1 1

A= 0 1 1 0 0 O

1 0 0 0 O

0 O 0 0 O

Node (vertex)



Bipartite networks

Weighted networks | Directed networks m&

0 2 1 0 1 1
A=12 0 0.5 A=|0 0 1
1 05 O 0 0 O

1 , Multiplex networks

1 2




Degree and density

* Which are the most important or central nodes in a network?

2

degree: ki = Z Ajj

g=1

(also called ‘degree centrality’)

The density of a network is the
proportion of possible edges
that actually exist.



Eigenvector Centrality

* (Give more weight to edges that connect to highly-
connected nodes

* Requires computing the eigenvectors of the
adjacency matrix (requires linear algebra)

 Google’s PageRank algorithm is a variant of this



Paths

* A path between two nodes is any
seguence of non-repeating connected
nodes that connects the two nodes

* The shortest path between two nodes
IS one that connects the two nodes
with the smallest number of edges
(also called the distance between the
nodes)

* The average path length is the
average distance between all pairs of
nodes in a network




culer and the
Seven Bridges of Kénigsberg
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|s there any walking route that crosses all seven bridges
exactly once?



Betweenness Centrality

* Extent to which a node lies on
paths between other nodes

* Let nistbe 1 if node ilies on the
shortest path from node s to
node t, and O if it doesn'’t (or if

there is no such path). The \ | ] )

betweenness centrality of node /77 ” I """""""""" "

IS. B i low-degree node with high betweenness
Lq — § :nst



Closeness Centrality

e Based on mean distance from a node to other nodes.

e Jake reciprocal so higher values indicate higher closeness

Mean distance from node /1y, — 1 Z d;;
to all other nodes n =

1 n

Closeness centrality: Ci = 7 S d;
7 Y

1




Interpretation of centrality measures

Centrality measure Interpretation in social networks
Deg ree éHow many people can this person reach directly?
Eigenvector How well is this person connected to other well-

‘connected people?

éHovv likely is this person likely to be the most
 direct route between two people in the network?

EHovv fast can this person reach everyone in the
‘network?

Closeness



Transitivity and Clustering

* How predictive Is the
fact that A Is friends with
B and C of whether B

and C are also friends?

Clustering coefficient:

(number of triangles) x 3

O —

(number of connected triples)

The path xyzis closed if the
third edge from zto x is present.



|_ocal Clustering

Local clustering for node 1

(number of pairs of neighbors of ¢ that are connected)

C; = : .
(number of pairs of neighbors of %)
e Similar to betweenness centrality ' \Q%{ : /
L1y
L —L/
; 4
e (Can be used to probe for structural //\ _\/@
holes
n
« Watts-Strogatz “Average clustering” O o l C.
coefficient: ws — Z ’



Community Detection

e Separating the network into groups of nodes that are highly
connected within groups and sparsely connected between
groups.

e Several algorithms exist, each with their own pros and cons.
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Interaction Models on Networks

Epidemics

Diffusion of innovations or information
Evolutionary games

Economic transactions

Food webs



Models of Network
Architectures

* Regular lattices

e Random networks

e Small-world networks

e Scale-free networks



| attices

® L > —9o 9o o )

Characterized by o/ e *—9o oo I o
regular structure .« . HHHPH
& R e o o o o o

Easy to model ¢ o
Ring lattice Square lattice

computationally

Sometimes possible to {
solve analytically \
Questionable realism

Triangular lattice Hexagonal lattice




Random Networks

Introduced by Erdds & Renyi (1959)

Minimal assumption for a connected
population

Multiple network formation algorithms
exist. Example: N nodes are specified,
and each possible edge Is added with
a fixed probability

Average degree is predictable, but
degree varies between nodes

Probably not realistic for many systems

0.14

0.12
£0.10
©
£0.08
(o)
5 0.06
Z0.04

0.02

0.00

degree distribution for
1000-node ER network




Small-world networks

Introduced by Watts and Strogatz (1998) p = probability of rewiring edge

Regular Small-worl Random
Characterized by high clustering (like : d N
lattices) and short path lengths (like

random networks)

Many real world networks share this
property:
) Fllm actors (|MDB) Increasing randomness

» Power grid nodes and high-voltage S

transmission lines in Western US e e
ol Clp) / Cl0)

» Neural network of C. elegans

Fat-tailed degree distribution: 04 | . T
overabundance of hubs L Up/LO)

® 3
. .
& o



Scale-free networks

0 0

10 10" g
10° m-zi.
» Scale-free: Parts of the network 0*E @ cotlsboraion “F
exhibit similar features as the | Inmeeaice ) clations

whole network | o1

l()(' TTTIT T TTTIm T TTTT T
" | | k| :
3

 Many real-world networks exhibit
power-law degree distributions 107 1
107 .
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Why do power laws exhibit as
straight lines on log-log plots”

" data e
model

B
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logy = log(ax™")

?

— log a + log(z ™)
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o

= loga — klogx

—_—

1 10 100 1000
number of inbound links

Pennock et al. (2002) PNAS



Preferential Attachment Algorithm

« Barabasi & Albert (1999)

* Nodes are added sequentially

* Connectivity is not uniformly 10° |
random, but preferential o .

0 )

Model 10° |

»  Start with m, nodes T

» Each time step, add a new
node with m edges, that link to
m existing nodes with a
probability proportionate to the
current degree of those nodes
(relative to all other nodes)

» “The rich get richer”






Preferential Attachment Algorithm

« Barabasi & Albert (1999)

* Nodes are added sequentially

* Connectivity is not uniformly 10° |
random, but preferential o .

0 )

Model 10° |

»  Start with m, nodes T

» Each time step, add a new
node with m edges, that link to
m existing nodes with a
probability proportionate to the
current degree of those nodes
(relative to all other nodes)

» “The rich get richer”



to setup
clear-all
set-default-shape turtles "circle"
;3 make the initial network of two turtles and an edge

make-node nobody ;3 Tirst node, unattached
make-node turtle 0 ;3 second node, attached to first node
reset-ticks

end

rrrrrrrrrrrrrrErEEREYEYEYTY MDD
;33 Main Procedures ;;;

rrrrrrrrrrrrRREREEREYEYEEYE I

to go
;» new edge 1is green, old edges are gray
ask links [ set color gray ]
make-node find-partner ;» Tind partner & use it as attachment
;3 point for new node
tick
if layout? [ layout ]
end

;» used for creating a new node
to make-node [old-node]
create-turtles 1
[
set color red
if old-node != nobody
[ create-link-with old-node [ set color green ]
;3 position the new node near its partner
move-to old-node
fd 8

]

end

;3 This code is the heart of the "preferential attachment" mechanism, and acts like

to-report find-partner

report [one-of both-ends] of one-of links
end







Why model”



* Models formalize and scatfold theory development
* (Good theory structures the interpretation of data

* (Good theory leads to better hypothesis formation



Published in: Theory & Psychology, 8 (2), 1998, 195-204. http://tap.sagepub.com/
© 1998 Sage Publications.

Surrogates for Theories

Gerd Gigerenzer

Max Planck Institute for Human Development

Several years ago, I spent a day and a night in a library reading through issues of the Journal
of Experimental Psychology from the 1920s and 1930s. This was professionally a most depressing
experience. Not because these articles were methodologically mediocre. On the contrary, many
of them make today’s research pale in comparison to their diversity of methods and statistics,
their detailed reporting of single-case data rather than mere averages, and their careful selection
of trained subjects. And many topics—such as the influence of the gender of the experimenter
on the performance of the participants—were of interest then as now. What depressed me was
that almost all of this work is forgotten; it does not seem to have left a trace in the collective mem-
ory of our profession. It struck me that most of it involved collecting data without substantive
theory. Data without theory are like a baby without a parent: their life expectancy is low.






Counterpoint:

Oncology
47/53 ‘landmark’ studies
did not replicate

(Begley & Ellis 2012, Nature)

Psychology A oo -
61/100 studies in top
journals failed to replicate -
(,O < 05) Eoso _
(Open Science Collaboration 2015, .

Science)

Neuroscience

Errors in popular
statistical methods imply
false positive rate of up to
70%

(Eklund et al. 2016, PNAS)

Most fields?

HAVE YOU FAILED TO REPRODUCE
AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

® Someone else's My own

Chemistry

Biology

Physics and
engineering

Medicine

Earth and
environment

Other

PRI P [TYTeN seunsa sarss wresan
renes PR eesun enses asssan “sane
venes anran impann remne sarann rrenn
“renes T tans T ssvan s
. inbnse sinen P weses
At e

20 40 60 80 100%

o

(Baker 2016, Nature)




Science as Signal Detection for Facts




How do we find facts”

Real truth of hypothesis

T

+ 1-p

a

- p

Probability of result

l —a

positive results



1. Hypothesis Selection

Novel
hypotheses

0000000
0000000
0000000

(

. Tested
hypotheses

T

A previously tested
hypothesis is selected
for replication with
probability r, otherwise
a novel (untested)
hypothesis is selected.
Novel hypotheses are
true with probability b.

KEY
Interior = true epistemic state

True (T)

@ rasem

‘ General case

Exterior = experimental evidence
O Unknown

O positive (+)

O Negative (-)

@ General case (+ or -)

2. Investigation

Real truth of hypothesis

3. Communication

Experimental results are communicated to
the scientific community with a probability that
depends upon both the experimental result
(+, —) and whether the hypothesis was novel
(N) or a replication (R). Communicated
results join the set of tested hypotheses.
Uncommunicated replications revert to their
prior status.

— New result communicated

----- New result not communicated

= T ®

[%2]

D

5 + 1-4 a positive results
=

S| .

s - S l-a negative results
o

o

McElreath R & Smaldino PE (2015) Replication, communication, and the
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.

File drawer



1. Hypothesis Selection 3. Communication

Experimental results are communicated to
Novel Tested A previously tested L By N L

1-r =l the scientific community with a probability that
/\ 77777 hypotheses ) hypotheses hypothesis is selected depends upon both the experimental result
\Q\ for replication with (+,-) and whether the hypothesis was novel
== 00000 \/—@O @‘ probability r, otherwise (N) or a replication (R). Communicated
000000 | 00 a novel (untested) results join the set of tested hypotheses.
...... 00 . @ hypothesis is selected. Uncommunicated replications revert to their
i Novel .hypothese?s_ are prior status.
i ...... | @0 .. true with probability b.
.o.... ©.... — New result communicated
....O. ..... +++= New result not communicated
000000 900000
000000, (00000

KEY Exterior = experimental evidence
Interior = true epistemic state O Unknown
True (T) O Posiive (+)
‘ False (T) O Negative (-)
‘ Genera! Iezee @ General case (+ or -)

2. Investigation

Real truth of hypothesis

1-p o positive results

B l1-a

Probability of result

Recursions:
r, = N+ anr( — frs(crs (1= B) + cr-B) + frs-1(1 — B)cry +fT,s+15CR—)

. Solutions:
ﬁT,s = b(l — r) Z rm_lK(m’ (m 4+ S)/2) (1 o 'B)%(m—}-s)ﬁ%(m_s)
m=1

McElreath R & Smaldino PE (2015) Replication, communication, and the
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.



Proportion true hypotheses at different numbers of net positive findings

Proportion true
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McElreath R & Smaldino PE (2015) Replication, communication, and the
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.



Proportion true hypotheses at different numbers of net positive findings

o
oo -

O
o N

Proportion true
o
@)

0.001 0.1 0.5 0.05 0.1 0.15 0.2
base rate false-positive rate

Base rate and false-positive rate most important tactors

McElreath R & Smaldino PE (2015) Replication, communication, and the
population dynamics of scientific discovery. PLOS ONE 10(8):e0136088.



"Nothing In biology makes sense
except in light of evolution”

—Theodosius Dobzhansky (1973)




"All social science research must do some
violence to reality in order to reveal simple truths.”

—Lazer & Friedman (2007)



Turning your idea into a model

Not a trivial problem

Look for existing solutions

I?HASE'I PHASE 2 PHASES_

Get creative

Collect ? ProfE
underpants

Keep it simple (KISS)

Solicit feedback

Remember Hofstadter’'s Law



