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“All social science research must do some violence to reality in order to 
reveal simple truths.” – Lazer & Friedman, 2007.  

 
Despite numerous efforts extolling the virtues of formal modeling (Epstein 2008; Schank 
2001; Smith & Conrey 2007; Marewksi & Olsson 2009; Farrell & Lewandowsky 2010; 
Weinhardt & Vancouver 2012; Smaldino et al. 2015), there remains widespread 
resistance among social and behavioral scientists to adopt formal modeling in their 
general research approach. In addition to the technical challenge posed by the 
mathematical and programming skills required to understand and develop models, a 
common point of resistance appears to stem from the perception of models as crude, 
overly simplistic, and unrealistic. The conclusion is that models are largely useless as 
anything but a formal exercise, and unnecessary for most scientists to engage with.  
 
Rather than argue against this perception, I enthusiastically embrace the perspective of 
the resistance, at least in part. Models are, by and large, stupid. My point of contention is 
with the conclusion that stupid models are not useful. Quite the contrary. Stupid models 
are extremely useful. They are useful because humans are boundedly rational and 
because language is imprecise. It is often only by formalizing a complex system that we 
can make progress in understanding it. Formal models should be a necessary component 
of the behavioral scientist’s toolkit. Models are stupid, and we need more of them.  

 
We Are Stupid 

 
Down to the very name of our species, Homo sapiens, we humans love to emphasize our 
intelligence relative to other species. We can certainly solve many complicated problems. 
And yet, we are often very stupid animals who make foolish choices. This isn’t a raw 
failing on our part. We are limited beings, with finite resources with which to compute a 
coarse model of our world and with which to invent options and evaluate their 
consequences. Moreover, our world, and the ecological and social environments in which 
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we find ourselves, are changing rapidly, far too rapidly for our brains to possibly adapt 
via genetic evolution. We do the best we can.  
 
Humans appear to have particular difficulty understanding complex systems. Mitch 
Resnick, in his book Turtles, Termites, and Traffic Jams, details his experiences teaching 
gifted high school students about the dynamics of complex systems using artificial life 
models (Resnick 1994). He showed them how organized behavior could emerge when 
individuals responded only to local stimuli using simple rules, without the need for a 
central coordinating authority. Resnick reports that even after weeks spent demonstrating 
the principles of emergence, using computer simulations that the students programmed 
themselves, many students still refused to believe that what they were seeing could really 
work without central leadership.  
 
We who study complex systems for a living may feel a certain smugness here. The 
average person may have difficulty understanding the forces that drive behavior, we 
think, but through our powerful intellects, our education, and our hefty experience 
pondering the deep mysteries, we can trust our intuition when it comes to understanding 
the psychological and social forces that make people do what they do. Unfortunately, my 
own experience working with complex systems and working among complexity scientists 
suggests that we are hardly immune to such stupidity. Indeed, even seemingly simple 
puzzles can pose a challenge.  
 
Consider the case of Marilyn Vos Savant and the Monty Hall problem. Vos Savant, 
famous for her record high score on standard IQ tests, has written a weekly puzzle 
column in Parade Magazine since 1986. In 1990, she wrote about a puzzle commonly 
known as the Monty Hall problem. The problem goes as follows. You are on a game 
show and given the choice to open one of three doors. Behind one of the doors is a 
fabulous cash prize, and behind the others, goats (the assumption is that no one would 
prefer the goats to the cash). You choose a door, say Door #1. The host, who knows 
where the cash really is, opens one of the other two doors, say #3, and shows you a goat 
behind it. The host now offers you the option to switch to Door #2. The question is 
whether it is to your advantage to do so.  
 
The answer is that, although you are never guaranteed to be correct, you should probably 
switch. The cash is twice as likely to be behind Door #2 instead of Door #1. This is not 
an easy result for most people to wrap their heads around, though it follows quite 
definitively from the assumptions of probability theory (if you are in doubt of the 
problem’s trickiness, I suggest that you pose it the next time you are at a dinner party). 
Strikingly, Vos Savant’s answer was challenged not only by lay readers, but also by 
many with advanced mathematical training. Indeed, she received many letters from 
professional mathematicians insisting that she was mistaken, even after she published a 
follow-up column with a detailed proof. The letters were often written in a smug, 
knowing tone; Vos Savant details many of these in an article posted to her website 
(http://marilynvossavant.com/game-show-problem/). One, written after the publication of 
the follow-up column and signed by a Georgetown University professor, reads  
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You are utterly incorrect about the game show question, and I hope this 
controversy will call some public attention to the serious national crisis in 
mathematical education. If you can admit your error, you will have contributed 
constructively towards the solution of a deplorable situation. How many irate 
mathematicians are needed to get you to change your mind? 

 
It is my belief that the widespread inability to grasp the solution to the Monty Hall 
problem stems from a failure to properly model the scenario. You should switch doors 
because regardless of which door you picked initially, the host can always show you one 
with a goat. Being shown a goat therefore has no bearing on the probability that your 
initial choice was correct. Since that probability is 1/3, there is a 2/3 chance that you were 
wrong and the cash is behind the remaining door. Thus, two out of three times, switching 
is the right move. The common intuition that the choice is instead a 50-50 split between 
two options is erroneous.  
 
Readers of this chapter are likely to be interested in social behaviors and their underlying 
psychological mechanisms. These systems tend to be quite a bit more complicated than a 
simple game show problem. This should concern us. Being an expert does not inoculate 
us from the failure of our limited imaginations, which evolved to solve problems quite 
different from those of interest to behavioral scientists. We could use some help.   

 
Models to the Rescue? 

 
I am, of course, going to argue that we should turn to models, and particularly formal 
models, for help. Specification of a formal model delineates the parts of a system and the 
relationships between those parts, allows us to examine the logical conclusions of our 
assumptions, and as a byproduct examine the appropriateness of those assumptions in the 
first place. But first, I need to take a brief detour, because when it comes to explaining 
any behavior, the first question we need to ask is: What are we talking about? 
 
Articulating a System and Its Parts 
As behavioral and social scientists, we want to understand some system related to 
individual or social behavior. Maybe we are interested in how social identity manifests 
when individuals feel threatened, or how individuals coordinate in joint activities, or how 
racially charged language is interpreted by individuals of different racial and 
socioeconomic backgrounds. These examples obviously represent a miniscule selection 
from among the questions we might ask. The important thing to note is how each 
question is subject to myriad interpretations. What aspect of the behavior are we 
interested in, specifically? Are we interested in the neurophysiology of joint attention, 
down to the way neural spike trains inform action programs? Or are we more interested 
in a “higher” level of organization, perhaps one in which we can ignore physiology and 
instead simply consider the temporal relationships between individually designated 
behavioral units? These are not trivial questions. For any given behavior, there are many 
questions we can ask related to its development, mechanism, and adaptive function, none 
of which are obviously favored from a scientific perspective (Tinbergen 1963).  
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Once we specify the level of organization and the kind of explanation we are looking for, 
we still need to do additional work to specify the exact question under investigation. 
Human beings are complex beings. It’s not just that we exist at many levels of 
organization. Of course we are made of organs, which are made of tissues, which are 
made of cells, which communicate using molecules and ions; above the level of the 
individual we are enmeshed in local social networks, communities both corporate and 
categorical, economies, and nations. A further problem arises when we consider that 
these levels interact – the causal arrows flow both ways (Campbell 1974; Wimsatt 1974). 
The problem is not insurmountable, but needs to be acknowledged. Any explanation of 
individual and social behavior must necessarily ignore important causal relationships 
both within and between levels of organization. We must become comfortable with 
ignoring those relationships, and this comfort is achieved partly through acknowledging 
their existence.   
 
Part of specifying our research question involves the articulation of the parts of the 
system of inquiry. Kauffman’s 1971 essay still provides the best discussion of this 
important but overlooked issue. Notice that I do not say that we should specify our 
question and then articulate the parts of the system. The two are parts of a single process. 
What is our question? To understand joint attention in coordinated behavior, perhaps. But 
what is our question right now? We must decompose the system into explicit parts. We 
must postulate properties of those parts and the relationships between them. In some 
sense, this is the essence of all scientific inquiry into behavior. All well-formed scientific 
research questions concern the properties of parts, the relationships between them, and 
the consequences of those relationships. The articulation of parts and relationships will 
necessarily be overly simplified and ignore details of physical reality. But much like a 
map is only useful because it ignores irrelevant detail, so is a well-formed scientific 
question useful when it captures only those features of reality most relevant to a useful 
answer.  
 
To make myself perfectly clear: To ask a scientific question about individual or social 
behavior, we must specify the parts of a system and the relationships between them. The 
question at hand may be about the nature of these parts or their relationships, and so we 
may designate a distribution of parts or relationships from which to sample, but it 
amounts to the same thing. The precise specification of parts and relationships is what 
defines a scientific question and separates it from wishy-washy pseudotheory that is 
unfalsifiable and distracting (Popper 1963; Gigerenzer 1998; Smaldino in press-a).  
 
Building Models, Formal and Otherwise 
Let us assume that we have articulated, in words, the parts of our system and the 
relationships between them. Perhaps we say, as do the adherents of optimal 
distinctiveness theory (Brewer 1991; Leonardelli 2011), that individuals have social 
identities that correspond to different contexts and different levels of inclusivity, and that 
they express these identities in order to balance internal drives for assimilation and 
differentiation. The parts are obviously the individuals, each of whom has the property of 
possessing an array of identities and the ability to express one of these at any given time. 
The relationships between the parts manifest as perceptions of others’ identities, which 
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dictate how individuals update their own expression. The theory suggests how this 
updating might occur: individuals should express more exclusive identities when their 
currently expressed identity is very inclusive, and vice versa.  
 
I have just described what is often called a verbal model. As Epstein (2008, para 1.2) 
phrases it, “Anyone who ventures a projection, or imagines how a social dynamic… 
would unfold is running some model.” Most behavioral and social scientists are quite 
comfortable with this sort of model. However, look closer. You’ll see that the parts of the 
system are not particularly well articulated, and neither are their relationships. What does 
it mean to possess an identity, let alone an array of them? How do individuals choose 
between their identities when it comes time to express them? Is the expression of a new 
identity costly, perhaps in terms of time or social capital? How do individuals take stock 
of the identities of their fellows? Are their perceptions accurate? Are all identities equally 
easy to perceive? There are additional related questions as well concerning the nature of 
system. Where do identities come from, and how might an individual gain a new identity 
or lose an existing one? What is the adaptive function of expressing an identity in the first 
place, since to be preserved identities must serve some purpose other than internal 
contentment?  
 
This is not to pick on optimal distinctiveness theorists. Social psychology, and the social 
and behavioral sciences more generally, are replete with similar cases. This is the 
limitation of verbal models. They are often a good way to begin an inquiry, when the 
available evidence suggests only some broad type of relationship that might be further 
refined. The danger with most verbal models is that there are many ways to specify the 
parts and relationships of a system that are consistent with such a model. Scientific 
inquiry stalls when data is used to simply support rather than refine a verbal model. 
Because many different data sets are consistent with a vague verbal model, researchers 
using such techniques risk lapsing into positing theories that are, by and large, 
unfalsifiable (Popper 1963; Gigerenzer 1998).  
 
The articulation of the parts of a system and the relationships between them always 
involves incurring some violence upon reality. Science is an iterative process, and 
pragmatically we must ignore some details about complexity and organization to make 
any headway. That said, it’s not a terrible goal to try and be a bit more precise. This is 
where formal modeling comes in. A formal model instantiates the verbal model as a 
collection of mathematical relationships and/or algorithmic processes. Rather than saying 
an individual has something like an array of social identities, we can model an individual 
as a computation object that has precisely an array of social identities, which in turn 
might be modeled as simple numerical values for the sake of comparisons between 
individuals. My colleagues and I have made models of this type (Smaldino et al. 2012; 
Smaldino & Epstein 2015). More than anything, we have learned that we have a long 
way to go in understanding the nature and social significance of social identity.  
 
To paraphrase Gunawardena (2014), a model is a logical engine for turning assumptions 
into conclusions. By making our assumptions explicit, we can clearly assess their implied 
conclusions. These conclusions will inevitably be flawed, because the assumptions are 
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ultimately incorrect or at least incomplete. By examining how they differ from reality, we 
can refine our models, and thereby refine our theories and so gradually we might become 
less wrong (Wimsatt 1987; Schank et al. 2014; Smaldino et al. 2015). Making formal 
models of the systems we study is the only way to make this possible.  
 
A Brief Note on Statistical Models 
When I talk about formal models, I am primarily talking about models whose purpose is 
to elucidate the mechanisms underlying psychological and behavioral phenomena. 
Another category of formal model, more familiar to many readers I’m sure, is the type of 
model often used in statistical analysis, such as a path model or a linear model. Statistical 
models are both important and limited, and therefore worth commenting upon, but as 
they are not my focus here I will keep my discussion of them brief.  
 
Statistical analyses are necessary and often well-motivated, but we should never forget 
that they too have models at their core. The generalized linear model, the work horse of 
the social sciences, models data as being randomly drawn from a distribution whose 
mean varies according to some parameter. The linear model is so obviously wrong yet so 
useful that the mathematical anthropologist Richard McElreath has dubbed it “the 
geocentric model of applied statistics,” in reference to the Ptolemaic model of the solar 
system that erroneously placed the earth rather than the sun at the center but nevertheless 
produced accurate predictions of planetary motion as they appeared in the night sky 
(McElreath 2015). Such models usually assume that one’s data are generated by 
randomly sampling from some distribution – perhaps a Gaussian distribution whose mean 
tracks some conditional variable. These models are terrifically important in establishing 
relationships between variables in empirical data sets, and thus for guiding the 
development of increasingly strong theories. However, many of these models say little 
about the processes that actually generated the data, or about the mechanistic nature of 
relationships between variables. This is the domain of the kinds of formal models I am 
principally discussing in this chapter. Such models, if sufficiently precise, may utilize 
data for validation and calibration (e.g. Schank 2008; Moussaïd et al. 2011; Hills et al. 
2012), but this is not strictly necessary for such models to be useful (Wimsatt 1987; 
Bedau 1999; Epstein 2008; Gunawardena 2014).   
 

Models Are Stupid 
 
A common objection to formal modeling in the behavioral and social sciences is that they 
are grossly unrealistic. This is, in general, quite correct. Formal models are often 
fantastically unrealistic. They ignore huge swaths of reality, including details of 
individual behavior and environmental complexity. However, framing this fact as a 
downside is a serious error, particularly if the alternative is to rely instead on verbal 
models. Verbal models can appear superior to formal models only by employing strategic 
ambiguity (sensu Eisenberg 1984), giving the illusion of understanding at the cost of 
actual understanding. That is, by being vague, verbal models simultaneously afford many 
interpretations from among which any reader can implicitly, perhaps even unconsciously, 
choose her favorite. I will illustrate this point with a simple parable.  
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The Parable of the Cubist Chicken  
One evening long ago, when I was an undergraduate student, a friend and I found 
ourselves waiting in the basement of a theater for a third friend, an actor about to finish 
his play rehearsal. There was a large collection of Legos in the room, and being of a 
jaunty disposition and not entirely sober, we amused ourselves by playing with the 
blocks. One of us, precisely who has been lost to memory, constructed an assembly of 
red, white, black, and yellow blocks and declared, “Look! It’s a Cubist chicken!” The 
other one of us laughed and heartily agreed that it most definitely looked like a Cubist 
chicken. We were extremely satisfied with ourselves, not only because it was very silly, 
but because if in fact we both understood the design to be a Cubist chicken, then it surely 
was one. We had identified something true about our little masterpiece and had therefore, 
inadvertently perhaps, created art. This is how liberal arts students amuse themselves.  
 
Our conversation moved on to other topics, but we continued to occasionally comment on 
the Cubist chicken. After some time had passed, our actor friend entered the room. 
“Check it out!” we said, “a Cubist chicken!” Our friend smiled bemusedly and asked us 
to explain exactly how the seemingly random constellation of Legos represented a 
chicken. “Well,” I said, pointing to various parts of the assemblage, “Here is the head. 
And here is the body and the legs, and here is the tail.” “No!” cried my co-conspirator. 
“That’s all wrong. The whole thing is just the head. Here are the eyes, and the beak, and 
here is the crest,” for my friend had envisioned our chicken as a rooster. And thus the 
illusion of our shared reality was shattered. We thought we had been talking about the 
same thing. But when more precision was demanded, we discovered we had not.  
 
Stupidity is a Feature, Not a Bug 
As many a late-night dorm room conversation can attest, humans are capable of very 
elaborate theories about the nature of reality. The problem is that, as scientists, we need 
to clearly communicate those theories so that we can use them to make testable 
predictions. In the social and behavioral sciences, the search for clarity can present a 
problem for verbal models, and can lead to a depressing recursive avalanche of 
definitions. What is a preference? A preference is a tendency for certain behaviors. What 
are those behaviors? It depends on the context. What is a context? This can go on for a 
while.  
 
Formal models provide a means of escape from the recursive abyss. By restricting our 
discussion to the model system, we can clearly articulate all the parts of that system and 
the relationships between those parts, leaving nothing out. This generally leaves us with 
something that, on the surface, often appears to be pretty stupid. What I mean is that not 
only are all models wrong, as George Box famously noted; they are obviously wrong. 
However, the stupidity of a model is often its strength. By focusing on some key aspects 
of a real-world system (i.e., those aspects instantiated in the model), we can investigate 
how such a system would work if, in principle, we really could ignore everything we are 
ignoring. This only sounds absurd until one recognizes that, in our theorizing about the 
nature of reality – both as scientists and as quotidian humans hopelessly entangled in 
myriad webs of connection and conflict – we ignore things all the time. We can’t function 
without ignoring most of the facts of the world. Our selective attention ignores most of 
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the sensory input that nevertheless innervates our neurons (as indicated by the well-
known “cocktail party effect”). This ignorance is fundamentally adaptive; the bounds to 
our rationality are severe, and dedication of cognitive resources entails balancing benefits 
and costs. Causal explanations work in much the same way. By ignoring all but the most 
relevant information, we are able to impose some modicum of order upon the world. 
Problems arise when we try to communicate our systems for ordering the world, as each 
of us has decomposed the world into a somewhat different set of parts and relationships. 
Formal models solve this problem by systematizing our stupidity, and ensuring that we 
are all talking about the same thing. 
 
In the following section, I will provide several concrete examples of how seemingly 
stupid models help scientists do their science. Before doing that, however, it is worth 
taking a moment to discuss some general ways in which models that are obviously wrong 
can nevertheless inform our thought. For example, studying computational models of 
complex systems can help us to build mental models of some emergent phenomena 
whose dynamics are otherwise difficult to visualize (Nowak et al. 2013), and the process 
of model construction can illuminate core uncertainties in one’s knowledge of a system 
(Epstein 2008). The clearest delineation I have found is William Wimsatt’s (1987) list of 
twelve “functions served by false models,” with the understanding that all models are 
false. I therefore reproduce this list, with only light editing, in Table 1.   
  
Table 1. Twelve functions served by false models. Adapted with permission from Wimsatt 
(1987).  

(1) An oversimplified model may act as a starting point in a series of models of increasing 
complexity and realism.  

(2) A known incorrect but otherwise suggestive model may undercut the too ready acceptance of a 
preferred hypothesis by suggesting new alternative lines for the explanation of the phenomena. 

(3) An incorrect model may suggest new predictive tests or new refinements of an established 
model, or highlight specific features of it as particularly important. 

(4) An incomplete model may be used as a template, which captures larger or otherwise more 
obvious effects that can then be “factored out” to detect phenomena that would otherwise be 
masked or be too small to be seen. 

(5) A model that is incomplete may be used as a template for estimating the magnitude of 
parameters that are not included in the model. 

(6) An oversimplified model may provide a simpler arena for answering questions about properties 
of more complex models, which also appear in this simpler case, and answers derived here can 
sometimes be extended to cover the more complex models. 

(7) An incorrect simpler model can be used as a reference standard to evaluate causal claims about 
the effects of variables left out of it but included in more complete models, or in different 
competing models to determine how these models fare if these variables are left out. 

(8) Two false models may be used to define the extremes of a continuum of cases in which the real 
case is presumed to lie, but for which the more realistic intermediate models are too complex to 
analyze or the information available is too incomplete to guide their construction or to 
determine a choice between them. In defining these extremes, the “limiting” models specify a 
property of which the real case is supposed to have an intermediate value. 

(9) A false model may suggest the form of a phenomenological relationship between the variables 
(a specific mathematical functional relationship that gives a “best fit” to the data, but is not 
derived from an underlying mechanical model). This “phenomenological law” gives a way of 
describing the data, and (through interpolation or extrapolation) making new predictions, but 
also, because its form is conditioned by an underlying model, may suggest a related mechanical 
model capable of explaining it.  
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(10) A family of models of the same phenomenon, each of which makes various false assumptions, 
has several distinctive uses: (a) One may look for results which are true in all of the models, and 
therefore presumably independent of different specific assumptions which vary across models. 
These invariant results are thus more likely trustworthy or “true”. (b) One may similarly 
determine assumptions that are irrelevant to a given conclusion. (c) Where a result is true in 
some models and false in others, one may determine which assumptions or conditions a given 
result depends upon.  

(11) A model that is incorrect by being incomplete may serve as a limiting case to test the adequacy 
of new more complex models.  

(12) Where optimization or adaptive design arguments are involved, an evaluation of systems or 
behaviors which are not found in nature, but which are conceivable alternatives to existing 
systems, can provide explanations for the features of those systems that are found. 

 
 

Some (Not-so) Stupid Models 
 
Compiling a list of all the interesting and useful models in the sciences is a fool’s errand. 
Let it suffice to say that such a list would be vast. Instead, I want to merely illustrate via a 
few pointed examples how simple, stupid models can be not only useful, but fundamental 
to good science. I will start with four well-known examples of models that changed our 
understanding of basic concepts in the physical, biological, and social sciences. I will 
then give two examples of how I have used formal models in my own work, focusing on 
topics that should be of interested to social psychologists: (1) social identity and 
distinctiveness and (2) hypothesis testing and replication.  
 
Newton’s Model of Universal Gravitation 
In 17th-century Europe, the field of astronomy faced a great challenge. Following the 
pioneering work of Copernicus and building on the meticulously collected data of Tycho 
Brahe, Johannes Kepler had definitively showed that not only do the Earth and the other 
planets revolve around the Sun, their orbital paths describe ellipses rather than perfect 
circles. It was a great mystery why this should be. Enter Isaac Newton. Newton was not 
the first person to propose that the heavenly bodies might be attracted to one another with 
a force that varied with the inverse square of the distance between them, but he was the 
first to build a model based on that proposition. His model was startlingly simple, 
consisting of only two objects – the Sun and the Earth (Figure 1). The model ignored the 
Moon as well as the five other known solar planets, not to mention all the celestial bodies 
that were unknown in Newton’s time. The size and topology of the Sun and Earth were 
also ignored; they were modeled as points identified only by their mass, position, and 
velocity. Nevertheless, the model’s strength lies in its simplicity. By restricting the 
analysis to only two bodies, the resulting planetary orbit was mathematically tractable. 
Using a simple rule stating that the force of gravitation was proportional to the product of 
the objects’ masses and inversely proportional to the square of the distance between 
them, Newton was able to show that the resulting orbits would always take the form of 
conic sections, including the elliptical orbits observed by Kepler. And because he could 
show that the same law explained the motion of falling objects on Earth, Newton 
provided the first scientific unification of the Terrestrial with the Celestial. Newton’s 
theory of Universal Gravitation rested on a model that to naïve eyes can easily appear 
quite stupid. Ultimately, the theory has been shown to be incorrect, and has been 
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epistemically replaced by the theory of General Relativity. Nevertheless, the theory is 
able to make exceptionally good approximations of gravitational forces – so good that 
NASA’s moon missions have relied upon them.  
 
 

 
Figure 1. A graphical representation of Newton’s model of planetary gravitation. The 
Earth has a forward velocity v, which is continuously altered by the gravitational 
attraction of the Sun, Fg, resulting in an elliptical orbit. In reality, the model is even 
simpler than implied here, because the Sun and Earth were represented as point 
masses rather than spheres.  

 
 
The Lotka-Volterra Model of Predator-Prey Relations 
For many years, fur trapping organizations like the Hudson’s Bay Company in Canada 
kept meticulous records on the pelt-producing animals in the regions where they trapped. 
These records illustrated that linked predator and prey species, like the Canada lynx and 
the snowshoe hare, tended to have cyclical population levels whose dynamics were 
tightly correlated. How to explain this? In the early 20th century, Alfred Lotka and Vito 
Volterra, working independently, applied ideas from the chemistry of autocatalytic 
reactions to generate a simple model of two interrelated populations, which can be 
instantiated as a pair of coupled differential equations. This model specifies two animal 
species: a prey species with a positive rate of growth in the absence of predators, and a 
predator species with a negative growth rate in the absence of prey. The number of 
predators negatively influences the number of prey, and the number of prey animals 
positively influences the number of predators. The model can produce correlated 
oscillations in the two populations that bear a striking resemblance to data on many 
predator-prey systems. The model also identifies conditions under which the two growth 
rates can give rise instead to more stable equilibria as well as yielding complete 
population collapse – predictions that have since been borne out empirically. However, 
the model is extremely simplistic. It assumes perfect mixing, so that the probability of a 
prey animal encountering a predator is simply the relative frequency of predators in the 
population. It ignores seasonality, circadian cycles, migration, density dependence in the 
growth rate of the prey species, development, and interactions with other species. Thus, 
when these features matter, the model may fail to align with empirical fact (Luckinbill 
1973; Berryman 1992). Nevertheless, the core assumptions of the model often hold. This 
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provides opportunities for extensions and refinements of the model when additional 
features cannot be ignored. By providing a foundational structure, the Lotka-Volterra 
model remains one of the core tools for understanding the relationship between predator 
and prey populations.  
 
Hopfield’s Model of Content-Addressable Memory 
Memory – the ability to store information for later recall – is a wondrous property of 
neural networks that make possible all but the most rudimentary forms of cognition. By 
the early 1980s, long-term potentiation – the process by which Donald Hebb’s theory that 
“neurons that fire together wire together” occurs – was relatively well described. It was 
believed that the formation of such associations were intrinsic to more complex forms of 
memory, such as that by which a person’s face is encoded and then later recognized, but 
the mechanism was unclear. How could a brain possible use partial information, like an 
occluded face, to reconstruct information encoded in memory? To begin to answer this 
question, the biophysicist John Hopfield (1982) constructed a simple model of two-state 
neurons in a fully connected network. Edge weights were determined by a process of 
Hebbian learning assumed to have already occurred, so that a number of configurations 
(or states) of “on” and “off” neurons were encoded in the network, with edges assumed to 
be bidirectionally symmetrical (i.e., undirected). Using mathematics derived from 
statistical physics, Hopfield showed firstly that, in such a system, encoded states would 
be stable, and secondly, that if initialized in a non-encoded state, the network would self-
organize into the encoded state that most closely matched the initialized state. In other 
words, he had a model for how memory retrieval could emerge spontaneously in a simple 
neural network. This model is almost absurdly simplistic, even stupid in its assumptions. 
Neurons are either on or off, ignoring subtleties of firing rates or even graded activation. 
Directionality is also ignored; links between neurons are equally strong in each direction. 
Exactly how the network is presumed to first arrive in its initial state is left a mystery. 
Yet, analysis of the model showed that something like biological neural networks could 
produce content-addressable memory. Hopfield himself later showed that the model’s 
functioning was robust to the relaxation of some of his strict assumptions (Hopfield 
1984), and the work has laid the foundation for much subsequent work in understanding 
the neurobiology of memory.  
 
Bass’s Model of the Diffusion of Innovations 
How do new products diffuse in a population? In the early 1960s, Everett Rogers (1962) 
provided a near-exhaustive study of this question. He showed that cumulative adoption 
very often corresponds to an S-shaped curve in which adoption starts slowly, accelerates, 
and then plateaus. Although Rogers showed that this pattern of product diffusion is 
common to a startlingly wide variety of domains, he could not explain it. Instead, he 
merely identified five tautological categories of adopters, defined in terms of their timing 
of adoption. This explanation is rather unsatisfying and raises many additional questions, 
including why individuals would fall into a particular category of adopter and how robust 
the adoption curves are to different proportions of each of those categories. Shortly after 
Rogers’ book was published, Bass (1969) introduced a simple model that provided a 
strikingly parsimonious explanation of Rogers’ data. Suppose, said Bass, that instead of 
five discrete types, there is only a single type of individual, who with some small 
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probability spontaneously adopts the new innovation (i.e., becomes an innovator) and 
otherwise adopts with a probability proportional to the number of other adopters she 
encounters. In other words, suppose that innovations spread like diseases. Bass 
constructed a mathematical model based on these assumptions and showed not only that 
they resulted in S-shaped adoption curves, but that by fitting the model to empirical data 
on the diffusion of different products, characteristics of a given population concerning the 
rate of observation and the propensity to adopt could be inferred. The Bass model is still 
the core model for studying the diffusion of products used in communication, technology, 
and marketing research today (Bass 2004). The Bass model is, of course, extremely 
simplistic. It ignores real differences between individuals, such as network position 
(Valente 1996) or the propensity to adopt based on social group membership (Berger & 
Heath 2008), which may influence the dynamics of diffusion. Nevertheless, the Bass 
model provides critical structure for developing theory and guiding data collection related 
to the diffusion of innovations.  
 
The Dynamics of Distinctiveness 
Some of my own work has concerned the population dynamics resulting from individual 
preferences for distinctiveness. Though much of human social behavior stems from 
conformity – that perfectly reasonable heuristic to copy others “when in Rome” – it is 
also quite common to actively differentiate ourselves from others (at least in the large, 
complex societies in which most of us find ourselves; see Smaldino in press-b). I first 
became involved in this research in graduate school, when I was approached by two 
social psychologists working within the domain of optimal distinctiveness theory (ODT; 
Brewer 1991; Leonardelli et al. 2010). This theory has long had at its core the sort of 
vague verbal model I discussed in Section 2. The presumption is that individuals have 
traits called social identities, and that, all else being equal, they will “identify” with 
whichever identity optimally balances the opposing needs for assimilate (to be similar to 
others) and differentiation (to be different from others). It is never stated exactly what 
does or does not constitute a social identity, what it means to identify as one thing, how 
the needs for assimilation and differentiation are calibrated, or how one optimizes a 
balance between them. Empirical tests have shown that U.S. college students do prefer to 
express, at least on paper, a more exclusive part of their social identity when the initially 
proposed identity (e.g., being a student of their college) is described as being non-
noteworthy (Brewer & Pickett 2002). However, many questions remain, and the theory 
remains largely lacking in precision.  
 
One assumption of the ODT is that deviations from optimality will be corrected as 
individual change their expressed identities to ones that more optimally balance their 
opposing needs, and that this will result in a stable equilibrium in which individuals are 
satisfied in their relative distinctiveness (Leonardelli et al. 2010). To test this, my 
colleagues and I decided to model a simple scenario based on one possible interpretation 
of ODT (Smaldino et al. 2012). We assumed a population of individuals that could each 
express one of some number of discrete identities at any given time. We also assumed 
that each individual had a preference for some optimal level of distinctiveness, where an 
individual’s distinctiveness was defined as the proportion of neighbors also expressing 
the same identity. One at a time, agents would consider the distinctiveness of their 
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currently expressed identity and, if a better option was available, switch to that identity 
(agents were updated one at a time because synchronous updating is unrealistic, 
eliminates the possibility of behavioral cascades, and can generate peculiar model 
artifacts. See Huberman and Glance 1993). The result was that individuals always ended 
up expressing identities that were far too popular to satisfy their preferences for 
differentiation. I later learned that this result echoed earlier work by ecologists 
considering animals joining groups of varying size, who had reached similar conclusions 
(Sibly 1983).   
 
Our model makes extremely simplistic assumptions about individuals’ abilities to 
observe, express, and change identities. Nevertheless, the model accomplishes something 
that no previous work on ODT had: it defined all of the parts of the system and their 
relationships explicitly. Based on a set of assumptions that is entirely consistent with the 
verbal model, we produced a model that provided several initial conclusions and 
prompted two broad questions. First, is it true that individuals are perpetually more 
similar to others than they would prefer? This could, in fact, be the case. Several other 
models have recently shown that even explicit preferences for anti-conformity or 
distinctiveness can nevertheless result in local conformity (Muldoon et al. 2012; Touboul 
2014; Smaldino & Epstein 2015). Second, if it is instead the case that individuals are 
generally satisfied with the distinctiveness of their expressed identity, then what key 
factors related to the dynamics of identity expression were missing from our model? 
Several possibilities present themselves, including factors such as network structure, 
interdependence between identities, behavioral inertia, and transaction costs to switching 
identities. We examined the first of these, network structure, by situating individuals on a 
square lattice and having them only respond to nearby neighbors. We found that for a 
wide range of conditions, this kind of network structure solved the problem: individuals 
could maintain identities that maximized their preferences for distinctiveness. Our 
implementation of network structure was itself quite unrealistic – real social networks 
rarely approximate square lattices. Nevertheless, the model represents a step, if only a 
small one, toward a more precise theory linking individual preferences for distinctiveness 
with the social organization that results from those preferences.  
 
Turning the Modeling Lens on the Scientific Process  
As a final example, I want to explore how formal models can help us better understand 
the larger endeavor in which we are engaged: science. Recently, controversy has raged 
over the roles of replication and publication policy in improving the reliability of research 
(Open Science Collaboration 2015). Some propose that all results should be published, to 
ensure that a "file drawer effect" doesn't lead to over-representation of positive results 
(Franco et al. 2014), while others are skeptical of the value of failed replications because 
replication studies may have diminished power (Kahneman 2011; Bissell 2013; Schnall 
2014). All acknowledge the importance of replication, but opinions vary widely on how 
much is needed and what its evidential value might be. Until now, each view has been 
based on intuition and lacked concrete rationale. And empirical analysis is inherently 
limited, both by the incompleteness of the published record and by the lack of internally 
consistent models of the scientific process that would allow us to usefully interpret extant 
data.  
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To remedy this dearth, Richard McElreath and I developed an analytical model of the 
population dynamics of science (McElreath & Smaldino 2015). The model represents a 
population of scientists who, with regularity, select a hypothesis for investigation, 
investigate it using the standard methods of their field, and then attempt to communicate 
their results to the scientific community. We built on previous work by Ioannidis (2005), 
who introduced a simple model of scientific investigation that highlights the importance 
of the base rate, that is, the a priori probability that a novel hypothesis is true. When the 
base rate is low, even the most stringent experimental methods may produce more false 
positives than true positives. Our model extends this discussion to consider the fact that 
scientists may replicate their own and each other’s work, but also that results must also 
pass the gauntlet of peer review, with negative results being less likely to be published 
than positive ones. We conclude that regardless of how much replication is done, the 
biggest impediments to the effectiveness of science are low base rate and high false 
positive rate. I know of no better way to improve the base rate than to make sure that 
hypotheses stem from well-validated, precise theories. Such theories, in turn, are often 
developed at least partly through the extensive use of formal modeling. The model also 
speaks directly to the debate over the meaning of failed replications. We show that 
replications are informative even when they have substantially lower power than the 
initial investigations. Perhaps counterintuitively, we also find that suppression of negative 
findings may be beneficial, at least when such findings are tests of novel hypotheses and 
the base rate is low. Under those conditions, most novel results will be correct rejections 
of incorrect hypotheses. As these will not be surprising, we may want avoid filling our 
journals with such results, or at least delegate them to a distinct location.  
 
Our model of science is extremely simple. It frames hypothesis testing in a standard but 
unsatisfying true/false classification, rather than considering practical significance and 
effect size estimation. It ignores researcher bias, multiple testing, and data snooping. It 
ignores the incentives that drive scientists in choosing and publishing results, as well as 
differences in exclusivity and impact between journals. Nevertheless, our model 
provides, for the first time, specific quantitative evaluations of many verbal arguments. 
As I have noted throughout this chapter, all models, whether formal or verbal, ignore 
some factors. The difference is that, with a formal model, it is precisely clear which 
factors are being considered and which are being excluded. 
 

Modelers Are Stupid (Sometimes) 
 
Models can help us to specify theories of how a complex system works, and to assess the 
conclusions of our assumptions when they are made precisely. However, I want to be 
careful not to elevate modelers above those scientists who employ other methods. This is 
important for at least two reasons, the first and foremost of which is that science 
absolutely requires empirical data. Those data are often painstaking to collect, requiring 
clever, meticulous, and occasionally tedious labor. There is a certain kind of laziness 
inherent in the professional modeler, who builds entire worlds from his or her desk using 
only pen, paper, and computer. Relatedly, many scientists are truly fantastic 
communicators, and present extremely clear theories that advance scientific 
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understanding without a formal model in sight. Charles Darwin, to give an extreme 
example, laid almost all the foundations of modern evolutionary biology without writing 
down a single equation. That said, evolutionary biology would surely have stagnated 
without the help of formal modeling. Consider that Darwinism was presumed to be in 
opposition with Mendelian genetics until modelers such as R. A. Fisher and Sewall 
Wright showed that the two theories were actually compatible.  
 
The second reason is that having a model is not the same thing as having a good model, 
or a model that is well presented, well analyzed, or well situated in its field. I want to 
focus on presentation and analysis. A model’s strength stems from its precision. I have 
come across too many modeling papers in which the model – that is, the parts, all their 
components, the relationships between them, and mechanisms for change – is not clearly 
expressed. This is most common with computational models (such as agent-based 
models), which can be quite complicated, but also exists in cases of purely mathematical 
models. I am not a big fan of standardized protocols for model descriptions, as the 
population of all models is too varied and idiosyncratic to fit into a one-size-fits-all box. I 
will simply ask modelers to make an effort in their reporting. Make sure your model 
description is clear. The broad strokes, which may stem from verbal theory, should come 
first, followed by a filling in of details. When possible, make code available as soon as 
your paper is published, if not before. Clarity reveals how well the model really 
represents the system it purports to represent. Obfuscation is the refuge of the poor or 
insecure modeler.  
 
This is not the place to go into great detail about the best practices for model analysis. I 
will only say that a major benefit of a model is the ability to ask all manner of “what if” 
questions. The assumptions of a model, including but not limited to its parameter values, 
should be explored extensively. After all, obtaining the conclusions that follow from 
those assumptions is the entire purpose of modeling. If you forgive the indulgence, I’ll 
pick one small nit here concerning methods for analyzing computational models. Where 
differences between conditions are indicated, avoid the mistake of running statistical 
analyses as if you were sampling from a larger population. You already have a generating 
model for your data – it’s your model. Statistical analyses on model data often involve 
modeling your model with a stupider model. Don’t do this. Instead, run enough 
simulations to obtain limiting distributions.  
 
Finally, it is important to always evaluate whether the conclusions of our model rely on 
reasonable assumptions. For example, it has been claimed that some economists have 
fallen prey to a sort of theory-induced blindness, giving too much credence to their 
models – which are generally based on the theory of the rational actor – and ignoring the 
fact that the core assumptions of the model are based on severe distortions of human 
psychology (Thaler 2015). Microeconomic models based on rational choice theory are 
useful for developing intuition, and may even approximate reality in a few special cases, 
but the history of behavioral economics shows that standard economic theory has also 
provided a smorgasbord of null hypotheses to be struck down by empirical observation.  
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Conclusion 
 
Humans, scientists included, are limited beings who are bad at forming intuitions about 
the organization and behavior of complex systems. Verbal models, while critical first 
steps in scientific reasoning, are necessarily imprecise. Overreliance on verbal models 
can impede precision and, by extension, impede progress in our understanding of 
complex systems. Formal models are explicit in the assumptions they make about how 
the parts of a system work and interact, and moreover are explicit in the aspects of reality 
they omit. This has the potential disadvantage of making formal models appear stupid. 
And of course, they are stupid, because we are limited beings and stupid models are the 
best we can do.  As Braitenberg (1984) writes, fiction will always be part of science “as 
long as our brains are only miniscule fragments of the universe, much too small to hold 
all the facts of the world but not too idle to speculate about them” (p. 1).  

An old adage holds that it is better to stay silent and be thought a fool than to 
speak and remove all doubt. As scientists, our goal is not to save face, but in fact to 
remove as much doubt as possible. Formal models make their assumptions explicit, and 
in doing so we risk exposing our foolishness to the world. This appears to be the price of 
seeking knowledge. Models are stupid, but perhaps they can help us to become smarter. 
We need more of them.   
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